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A method for controlling the thermal boundary conditions of non-equilibrium molecular
dynamics simulations is presented. The method is simple to implement into a conventional
molecular dynamics code and independent of the atomistic model employed. It works by
regulating the temperature in a thermostatted boundary region by feedback control to
achieve the desired temperature at the edge of an inner region where the true atomistic
dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilib-
rium molecular dynamics simulations. Three thermostats are investigated: the global
deterministic Nosé–Hoover thermostat and two local stochastic thermostats, Langevin
and stadium damping. The latter thermostat is introduced to avoid the adverse reflection
of phonons that occurs at an abrupt interface. The method is then extended to allow atom-
istic/continuum models to be thermally coupled concurrently for the analysis of large
steady state and transient heat conduction problems. The effectiveness of the algorithm
is demonstrated for the example of heat flow down a three-dimensional atomistic rod of
uniform cross-section subjected to a variety of boundary conditions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The boundary conditions for molecular dynamics (MD) simulations in the condensed phase are a compromise between
correct representation of the far-field and minimization of the system size due to computational constraints. In recent years,
concurrent multiscale methods have been developed for crystalline solids in which the complex response of the far-field is
represented by a coarse-grained continuum region constructed from finite elements [1–13]. These multiscale modelling
methodologies have mainly focussed on the far-field representation of the elastic field at zero or constant temperature,
although a few authors have looked at the thermal far-field [9,10,13]. It is the aim of this paper to develop algorithms which
firstly allow the temperature of an MD simulation to be precisely controlled away from thermal equilibrium, and secondly
allow MD simulations to be concurrently coupled with a continuum representation of the thermal far-field.

The requirements of the continuum far-field depend on the nature of the simulation, generally either sampling or dynam-
ics. If the purpose of simulation is sampling of near equilibrium or steady state quantities, then typically only slowly-chang-
ing thermodynamical or statistical quantities are of interest and inertial effects are small. Rapid changes occur in truly
dynamic situations such as fast fracture. Finite temperature simulations are complicated by the reflection of high frequency
phonons from the interface between the atomistic and continuum regions. This leads to energy trapping and localized
heating [6]. Correct transmission of phonons across the interface [1,6,13] is only necessary if the far boundaries can be seen
. All rights reserved.
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during the simulation period (e.g. MEMS) or there are two atomistic regions which need to interact dynamically via the con-
tinuum medium (e.g. rapid growth of multiple cracks). We assume here that absorption of phonons at the interface is a suf-
ficient requirement. This type of approach [10] has allowed the elastic boundary conditions to be specified at a position
remote from the atomistic region. The majority of models are for isothermal problems, however. Constraining simulations
to constant temperature can be highly restrictive, especially in cases where work is being done on the system and heat is
being generated. Liu et al. [14] have recently demonstrated that MD simulations of nanoindentation are very sensitive to
restricted thermostatic control. Keeping the boundary temperature constant also restricts simulations to be near to thermal
equilibrium, whereas non-equilibrium conditions (e.g. temperature gradients) may be of interest. Elastically coupled atom-
istic/continuum simulations differ in their approach to (constant) finite temperature. Dupuy et al. [15] and Gill et al. [3] re-
tain the dynamics of the atomistic system in the continuum region by allowing the finite element nodes to move under
inertial forces. However, the dynamics of coarse-grained nodes are not physical and cannot model systems in which there
is a temperature variation. This is because equipartition demands that a system will move towards a state in which each
degree-of-freedom has the same thermal energy. If the number of degrees-of-freedom is reduced then the thermal energy
it can store in the dynamics of those degrees-of-freedom is reduced. Therefore the kinetic energy per unit volume is not con-
served through the body as the number of degrees-of-freedom per unit volume is not constant. Qu et al. [10] do not resolve
the thermal vibrational motion of the atoms/nodes but link an isothermal molecular dynamics simulation to a quasi-static
elasto-plastic continuum. As Qu et al. [10] consider an isothermal problem, the missing vibrational energy does not need to
be represented in the continuum. A similar philosophy is adopted in this paper, except in the non-isothermal case the miss-
ing kinetic energy in the continuum does need to be explicitly conserved. This energy is represented by the usual continuum
state variable, temperature, and is allowed to evolve according to the classical laws of heat conduction whilst interacting
with the atomistic medium.

Three issues need to be addressed. Firstly, before any multiscale coupling can be considered, it is necessary to be able to
precisely stipulate the boundary conditions of a non-equilibrium molecular dynamics (NEMD) simulation. This is investi-
gated in the context of steady state heat conduction in Section 2. Secondly, for the coupled model, compatibility between
the material parameters in the atomistic and continuum descriptions must be ensured. And thirdly, smooth transfer of infor-
mation across the interface between the two models is required. These last two issues are discussed in Section 3.

2. Imposing a steady state temperature gradient on a molecular dynamics simulation

Most molecular dynamics simulations are sampled from the micro-canonical (constant energy) or canonical (constant
temperature) ensembles. There have been a number of studies where a steady state temperature gradient has been imposed
on an atomistic simulation [16–25]. The technique simply uses conventional thermostatting techniques to enforce different
temperatures on opposite ends of the sample. These NEMD simulations can then be used to determine the effective thermal
conductivity of the medium, k, from Fourier’s law for macroscopic heat flow
q ¼ �krT: ð2:1Þ
where q is the heat flux (averaged over time and space) in the unthermostatted region between the thermostats, and rT is
the ‘‘measured” steady state temperature gradient. However, as we shall see, the temperature gradient that develops be-
tween the thermostatted regions is not the temperature gradient that is expected from the stipulated end thermostat tem-
peratures. The situation described above is therefore not as straightforward as it may appear. This is discussed further in this
section where details of the atomistic simulation are given below, along with a discussion of potential difficulties.

2.1. Choosing a thermostat for NEMD simulation

In this paper we restrict our interest to ballistic heat transport in insulators via phonon interaction (i.e. conduction by
electrons is neglected). This is an inherently non-linear phenomenon as phonons do not interact in the harmonic limit.
The temporal evolution of a particle of mass mi at a position xi in the main (unthermostatted) body of the system is described
by the usual equations of motion
mi€xi ¼ �
@VTOT

@xi
: ð2:2Þ
where the potential energy of the system, VTOT ¼
P

i

P
j>iVðrijÞ, is the sum over all the interatomic potentials, V(rij), which are

assumed here to be pairwise functions of the interatomic separation between atoms i and j,rij = jxi � xjj. For the purposes of
this paper we use the Lennard–Jones potential
VðrÞ ¼ 4e
r
r

� �12
� r

r

� �6
� �

ð2:3Þ
where only nearest neighbour interactions are considered. Physically, this potential is applicable to solid argon which has a
melting temperature of roughly 80 K. In accordance with this we take e = 120kB,r = 3.4ÅA

0

and m = 6.68e 10�26 kg [17,26,27]
where kB is Boltzmann’s constant. Note that the exact form of the interatomic potential is not important to the general



7414 K. Jolley, S.P.A. Gill / Journal of Computational Physics 228 (2009) 7412–7425
conclusions of this work. In fact, the primary philosophy behind the proposed modelling approach is to make it as simple and
general as possible, so that it is not specific to particular details of the atomic model and can be implemented into a simu-
lation code with only minor changes.

Consider a three-dimensional rod of Lennard–Jones atoms subjected to a temperature difference at each end. To establish
a steady state temperature gradient along the rod, it is necessary to inject kinetic energy into one end of the rod and to re-
move it from the other end. This is achieved by the use of thermostatting algorithms. Two well-known examples of very dif-
ferent thermostats will be considered in this paper: the Langevin thermostat [6,20] and the Nosé–Hoover thermostat
[20,28,29]. Like most thermostats, these have been designed to maintain a system at thermal equilibrium for constant tem-
perature MD simulation. Their suitability for NEMD simulation is discussed further here.

The Langevin thermostat is a stochastic thermostat which adds a random force to the particle motion along with an
appropriate damping term such that (2.2) becomes
mi€xi ¼ �
@V
@xi
� cmi _xi þ Rf; ð2:4Þ
where c is a damping coefficient, �1 6 R 6 1 is a uniformly distributed random variable and fn ¼
ffiffiffiffiffiffiffiffiffiffiffi
6cmiTc

Dt

q
is the magnitude of

each component (n = x,y or z) of the stochastic force f for a target temperature Tc and a time step Dt. We describe the Lange-
vin thermostat as a local thermostat as the target temperature is specified for each atom. This is advantageous for NEMD
simulations as it allows for a spatially non-uniform temperature distribution to be specified at the boundaries. It is also very
easy to implement in a simulation code. One drawback is that there is no feedback between the actual temperature and the
target temperature for the Langevin thermostat. This is reasonable for equilibrium thermostatting, for which it was designed,
but far from equilibrium there is no guarantee that the target temperature will be achieved or maintained.

The Nosé–Hoover thermostat is a deterministic thermostat which maintains the average temperature of an atomic
ensemble at a target value. This is widely used for constant temperature dynamical simulations due to its symplectic, volume
conserving, time-reversible Hamiltonian structure [3]. In this case the motion of a thermostatted particle is described by
mi€xi ¼ �
@V
@xi
� nmi _xi Q _n ¼ 1

MT kBTc

XMT

p¼1

mp _x2
p � 1 ð2:5Þ
where Q is a thermal mass, n is a thermostatting variable and the summation is over all the thermostatted particles,
p = 1, . . . ,MT. This is a global thermostat in that it enforces an ensemble of particles to maintain an average kinetic energy
over time. It preserves the average temperature but it does not have any control over the distribution of the temperature
within the thermostatted region. Any temperature distribution which satisfies this average is possible. This is acceptable
for isothermal simulations, in which there is no driving force for the distribution to be non-uniform. However, in NEMD sim-
ulations, where temperature gradients exist, the temperature distribution in the thermostatted region can be highly non-
uniform. In this case, the temperature imposed at the edge of the thermostatted region will not be the target temperature.
The Nosé–Hoover thermostat therefore also offers less potential for the stipulation of a spatial variation in temperature over
a boundary, although Li and Weinan [5] have made some notable achievements in this regard by employing a number of
Nosé–Hoover thermostats to control different regions of the simulation. One advantageous property, however, is that the
temperature is controlled by feedback between the actual and target temperatures, so one can be confident that the desired
average temperature has been achieved even in non-equilibrium simulations, unlike the Langevin thermostat. For rapidly
changing transient boundary conditions, local thermostats are more responsive than global ones, which only react to a
change in the global average temperature.

2.2. A standard NEMD simulation of a steady state temperature gradient

The steady state thermostatic control of a rectangular rod of 100 atoms in length with a periodic square cross-section of
8 � 8 atoms is investigated. The atoms are in the minimum energy hexagonal close packed structure and oriented such that
an 8 � 8 cross-sectional slice represents a (100) plane. From a continuum perspective this is effectively a one-dimensional
heat conduction problem, as there is expected to be no net heat flow or temperature variation within a cross-sectional slice
of atoms. Therefore, each group of 8 � 8 atoms within a slice are referred to by an incremental index j. It is intended that the
ends of the rod be maintained at different, uniform temperatures in order to achieve a prescribed steady state temperature
gradient within some region of the simulation, j = 0, . . . ,M, where the true dynamics of the system are preserved. The thermo-
statted regions (TR) at the ends with the central true dynamics region (TDR) in the middle. This setup is illustrated in Fig. 1(a)
for two TR of MT atomic slices. The separate regions are therefore defined by slice indices
j ¼
�MT ; . . . ;�1 for left TR

0; . . . ;M for TDR
M þ 1; . . . ;M þMT for right BR

8><>: ð2:6Þ
The Langevin damping coefficient, c = 1/2xD, is taken to be half the Debye frequency [10] (above which there are no modes).
Solid argon has a Debye temperature of 93 K [30], which is equivalent to a Debye frequency of xD = 1.2 � 1013 s�1. The time



Fig. 1. Schematic of the three-dimensional molecular dynamics simulation. (a) The Lennard–Jones rod 100 atoms in length has an 8 � 8 square cross-
section. Thermostats are used to regulate the temperature at the ends. The only net temperature gradient will be along the length of the rod. Therefore the
time-ensemble averaged temperature in each cross-sectional slice of 64 atoms is expected to be uniform and is denoted hTjiwhere j is the index of the slice,
shown in detail on the horizontal axis. A total of MT slices are thermostatted at each end (red TR region) in order to control the thermal boundary conditions
of the inner true dynamics region of M + 1 slices (yellow TDR region). (b) for accurate control of the thermal boundary conditions, a feedback algorithm is
employed. In this case a buffer region of MB slices (green BR region) is introduced between the TRs and the TDR to avoid any corrupting boundary effects at
the edge of the TRs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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step used in the integration of the equations of motion was chosen such that approximately 50 samples were performed in
each oscillation, which equates to a time step of s = 2.15 � 10�14 s. Velocity Verlet time integration was used and micro-
canonical simulations were performed to test energy conservation. The extremities of the rod are fixed ( _x�MT ¼ _xMþMT ¼ 0)
so that the atomic spacing is the zero Kelvin equilibrium spacing, although similar results are obtained for free end
conditions.

The behaviour of three different thermostats is investigated: Nosé–Hoover (2.5), Langevin (2.4) and stadium damping.
Stadium damping is a variant of Langevin which has been shown to be an effective means of phonon absorption [10,31]
and importantly to produce the expected canonical ensemble [2]. In this case, the damping coefficient is a function of posi-
tion, such that c = c(xi). As shown in Fig. 2(c), it is linearly ramped from a maximum value of c = c0 at the rod ends down to
zero at the edge of the thermostatted region. This forms a diffuse interface which allows phonons to move into the damping
region and be slowly absorbed as they move through it. This avoids many of the problems associated with phonon reflection
at a sharp interface [13]. More sophisticated methods for sharp interfaces based on memory kernels have been considered in
the literature [4,6–9] but these usually have to be calibrated for a particular potential, are derived from the harmonic approx-
imation (for which heat conduction is not observed), and generally are not so readily implemented.

The thermostats are applied to a rod of 100 atoms in length with MT = 15 slices of thermostatted atoms at each end and
hence M + 1 = 70 atomic slices in the TDR. The fixed target temperatures for the thermostats are TL and TR at the left (L) and
right (R) ends, respectively. A temperature difference is imposed such that TR = 0.6TL. The effect of temperature is investi-
gated by considering TL = 5, 10, 25 and 50 K. Simulations are allowed to reach a steady state over a time of 106s and then
the average temperature of the atoms in the jth slice, hTji ¼ 1=2mj _x2

j

D E
, is determined over a subsequent period of 106s,

where h�i denotes the time-ensemble average over the whole slice. The resulting steady state temperature distributions
along the length of the rod are shown for the three thermostats in Fig. 2(a)–(c). From (2.1) it is expected that the temperature
profile will vary linearly between the target temperatures at each end for a constant thermal conductivity (as illustrated by
the dashed lines in Fig. 2). As found in previous works [16–25], the simulation results do not conform to this expectation.
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Fig. 2. Steady state temperature profile along the 8 � 8 � 100 atomic rod shown in Fig. 1(a). The temperature difference is imposed by thermostatting the
two end atoms such that the left hand thermostat temperature is TL = 5, 10, 25 and 50 K and that at the right hand end is TR = 0.6TL. Results are shown for (a)
a deterministic Nosé–Hoover thermostat, (b) a stochastic Langevin thermostat and (c) a variant of the Langevin thermostat, stadium damping. The expected
steady state temperature distribution for a constant thermal conductivity is shown as a dashed line. The deviations from the expected result arise from
end effects. (d) The maximum percentage error for each simulation shows that the error decreases as the temperature increases and is smallest for the
Nosé–Hoover thermostat, although it is still greater than 5%.
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There is a drop in the temperature at the edge of the thermostatted regions, such that the temperature gradient observed in
the simulation is not the temperature gradient expected from the imposed temperature difference. The maximum deviation
from the correct temperature profile (to be determined and shown in Fig. 3) is plotted in Fig. 2(d). The percentage error is
quite significant and clearly observable in all the temperature profiles, ranging from 5 to 20%. The largest errors are seen at
low temperatures (where phonon interactions, due to sampling non-linearities in the potential, are reduced) and for stochas-
tic thermostats (Langevin and stadium). This effect has been widely observed and is generally attributed to phonon mis-
match at the interface between the thermostatted and unthermostatted regions [22]. The effect can be even more
pronounced for other potentials, e.g. silicon [22]. For real physical interfaces this is known as the Kapitza effect, where it
is observed that the thermal conductivity, like most physical properties, deviates from the bulk value near an interface. Even
if the interface is artificial, as is the case here, it is difficult to avoid. To understand the origin of this boundary effect, and why
its magnitude depends on the thermostatting method, we refer to the Green–Kubo formula [22]. This linear response theory
allows the thermal conductivity to be determined from equilibrium simulations, and is often used for this purpose rather
than NEMD simulations. It states that the conductivity is proportional to the long-time average of the heat flux autocorre-
lation. Assuming local equilibrium, the conductivity between slices j and j + 1 is proportional to
kj / lim
t!1

Z t

0
hqjðsÞqjð0Þids ð2:7Þ
where qj(t) is the instantaneous net heat flux between slices j and j + 1. The net energy flux between particles is therefore due
to long-term correlations between their motions. Any thermostat will always necessarily alter a particles motion and corrupt
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Fig. 3. Precise imposition of a steady state temperature gradient along a three-dimensional (8 � 8 � 100 atom rod) NEMD simulation by feedback control of
the thermal boundary conditions using (2.9) for (a) Nosé–Hoover, (b) Langevin, and (c) stadium damping thermostats. The time-averaged temperature
profile along the rod is shown. The temperatures in the left and right thermostatted regions (MT = 15 atomic slices = 960 atoms each) are regulated at TL and
TR by (2.9) such that the prescribed target temperatures in atomic slices j = 0 and j = 69, respectively are maintained at T0 = 5, 10, 25 and 50 K and TM = 0.6T0

for all four cases. A buffer region (BR) of MB = 10 atomic slices is introduced between the thermostatted regions (TR) and the true dynamics region (TDR) to
avoid Kapitza and other effects at the TR/BR interfaces. Note that the temperature variation within the TR is non-uniform and unpredictable. The stochastic
Langevin and stadium damping thermostat require a much larger temperature difference between the TR at either end to impose the same temperature
gradient than the deterministic Nosé–Hoover thermostat. The Kapitza effect at the boundaries is smallest for the stadium damping case. The profiles in the
TDR are not exactly linear due to changes in the thermal conductivity with temperature.
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this correlation and hence reduce the thermal conductivity at the edge of the thermostatted region. The Nosé–Hoover ther-
mostat in Fig. 2(a) is seen to be better than the Langevin and stadium thermostats in Fig. 2(b) and (c) as deterministic meth-
ods naturally exhibit longer correlation times than (uncorrelated) stochastic methods. In the steady state, the time-averaged
heat flux at each point must be constant for conservation of energy. In this case (2.1) shows that the effective conductivity at
a point must be proportional to the inverse of the temperature gradient such that k / 1/rT. There is a larger-than-expected
temperature gradient at each end for the Langevin and stadium thermostats in Fig. 2(b) and (c). This implies that the con-
ductivity is small at the thermostat interfaces and that these stochastic thermostats strongly affect any temporal correlations
between particle motions at that point. The case for the Nosé–Hoover thermostat in Fig. 2(a) is improved, although the
boundary conductivity is still reduced. An elementary solution to these adverse, non-linear boundary effects is proposed
in the next sub-section.

2.3. Improved boundary conditions with feedback control for steady state NEMD simulation

The steady state thermostatic control of a rectangular rod is again investigated, but to avoid the problems due to bound-
ary effects and global thermostatting methods, the thermostatted regions (TR) at the ends are separated from the central true
dynamics region (TDR) in the middle by two small buffer regions (BR). This setup is illustrated in Fig. 1(b) for two BR of MB

atomic slices and two TR of MT slices. The separate regions are therefore defined by slice indices
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j ¼

�ðMB þMTÞ; . . . ;�ðMB þ 1Þ for left TR
�MB; . . . ;�1 for left BR

0; . . . ;M for TDR
M þ 1; . . . ;M þMB for right BR

M þMB þ 1; . . . ;M þMB þMT for right TR

8>>>>>><>>>>>>:
ð2:8Þ
It has been previously noted that there is not a straightforward relationship between the temperature that is imposed on the
TRs and the temperature gradient which develops between them in the TDR. To ensure that there is precise control of the
temperature within the TDR, the average temperature of the atomic slices at the edges of this region, hT0i and hTMi are deter-
mined, where hTji is the time-ensemble average of the temperature over all the atoms in slice j, as before. It is desired that
these two atomistic temperatures attain the constant values T0 and TM, respectively in the steady state. The target temper-
atures in the left and right TRs, TL and TR, must evolve to ensure that the actual temperatures at the periphery of the TDR (hT0i
and hTMi) are maintained at the prescribed values (T0 and TM). A simple feedback loop is used to achieve this such that
_TL ¼
T0 � hT0i½ �

Q T
; _TR ¼

TM � hTMi½ �
QT

ð2:9Þ
where the constant QT determines the responsiveness of the thermostat. One benefit of this algorithm is that it provides feed-
back for the stochastic methods which was previously missing. Hence one can be certain that Langevin and stadium damping
achieve the desired temperature.

Results are obtained for the same conditions as in Fig. 2, with T0 = 5, 10, 25 and 50 K and TM = 0.6T0 with MT = 15,MB = 10
and a TDR of M + 1 = 70. These temperature profiles are shown in Fig. 3 for the three different thermostats under investiga-
tion, with QT = 100s and a thermal mass of Q = 10es for the Nosé–Hoover thermostat. It is found that all the thermostats
correctly impose the prescribed temperatures at the boundaries of the TDR and that they all achieve a steady state in a sim-
ilar time. Inspection of the temperature variation over time at every slice within the TDR shows that it reproduces the Boltz-
mann distribution (that one would expect at the equivalent equilibrium temperature). The temperature profiles are not
exactly linear. This is because the thermal conductivity changes with temperature. The temperature profile is therefore most
non-linear for the cases where the temperature range is greatest. The three principal differences between the three algo-
rithms are in the TRs and the BRs. Firstly, the temperature distribution in the TRs is quite non-uniform for the Nosé–Hoover
and Langevin thermostats. This is because there is an abrupt change in the dynamics of the particles between the TRs and
BRs and, in the case of the global Nosé–Hoover thermostat, this is controlling the average temperature not the temperature
distribution. The temperature distribution in the stadium damping case is more linear, which is in accordance with the linear
variation in the damping parameter, c(x). Secondly, a major difference between the stochastic thermostats and the determin-
istic Nosé–Hoover thermostat in Fig. 3 is that a much greater difference between the thermostat target temperatures, TL � TR,
is required for the stochastic thermostats to achieve the prescribed temperature difference, T0 � TM. This is expected from
Fig. 2, where the stochastic Langevin thermostat is observed to corrupt the particle dynamics considerably leading to a larger
drop in the conductivity at the interface with the thermostat region. This large temperature difference could be problematic
if the lower target temperature in the thermostat region dropped below zero or the higher target temperature exceeded the
melting point. However, this is only expected to be truly problematic in the presence of very high temperature gradients. The
temperature gradient considered in this study is high for investigative purposes, but it is not unrealistic and can be easily
attained when two surfaces at slightly different temperatures first come into contact for instance. The third difference be-
tween the thermostats is in the BRs. For the Nosé–Hoover thermostat the desired temperature gradient is only established
within 5–6 atoms of the TR. For the Langevin thermostat there is a large drop in temperature over the first 2–3 atoms in the
BR but then the correct temperature gradient is achieved. The best case is for the stadium damping thermostat, for which the
boundary effect is small, and there is a smooth transition from the TR to the desired temperature gradient over 2–3 atoms.
Hence it seems possible that the BR could be reduced in size for the stochastic algorithms. Note that energy is being injected
by the thermostat into the left hand TR and removed from the right hand TR. Both ends are controlled by an identical algo-
rithm which can handle either situation without modification. This is important when considering transient problems where
the direction of heat flow across a boundary can reverse during the course of the simulation. The stadium damping algorithm
produces the smoothest temperature profile across the TR and BR, is easy to implement, addresses each atom locally and
provides a diffuse interface for phonon absorption. This method is therefore considered to be the best candidate for further
implementation and is therefore the only thermostat considered in the final sections of this paper.
3. A coupled atomistic/continuum model for heat flow

The aim of this section is to demonstrate that a continuum representation of the NEMD simulation in Section 2 can be
developed and concurrently coupled to an atomistic NEMD simulation to provide full control of the remote boundary con-
ditions. A continuum model of the one-dimensional heat conduction problem is derived in Section 3.1. In this case the finite
difference method is used. The model is initially developed in Section 3.2 within the context of the steady state analysis of
the previous section. This is then extended to the fully transient case in Section 3.3, where the boundary conditions to the
TDR are a function of time.
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3.1. The continuum heat conduction model

A continuum finite difference model is employed in regions which overlap the TRs and the BRs, as shown in Fig. 4(a). The
one-dimensional finite difference grid matches the initial regular positions of the atomistic slices in these regions. However,
this is not a requirement of the model, for which the grid-spacing can be irregular and extend to any remote position. The
nodal temperatures on the finite difference grid are denoted as eT j and are at a fixed position ~xj, where j denotes the slice
number. These temperatures can evolve by the usual finite difference algorithm
Fig. 4.
transien
bounda
bounda
BR/TDR
conditio
c _eT j ¼ ~qj � ~qj�1 ð3:1Þ
where
~qj ¼ k
eT j þ eT jþ1

2

 !
ðeT jþ1 � eT jÞ
ð~xjþ1 � ~xjÞ

ð3:2Þ
is the continuum heat flux between nodal points j and j + 1. The thermal conductivity k(T) is assumed to be a function of
temperature T. The constant c is the heat capacity of an atom and is defined to be the amount of energy required to raise
the temperature of an atom by 1 K. In the simple case of a classical three-dimensional crystal with pairwise interactions this
A schematic diagram of the coupling between the NEMD simulation and the finite difference continuum representation for (a) steady state and (b)
t thermal boundary conditions. This is only shown for the left hand end of the rod, as a similar situation exists at the other end. The steady state

ry condition drives the atomistic and continuum temperatures at the CR/TDR interface to the same value using (2.9) and (3.6). The transient
ry condition is slightly more expensive to calculate as it conserves the heat fluxes across the TR/BR interface. This interface is chosen (rather than the
interface) to minimize delays in the responsiveness of the thermostat. The transient boundary condition is also applicable to steady state
ns.
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is readily determined to be c ¼ dð3kBTÞ
dT ¼ 3kB. The Debye model predicts the heat capacity for the more general case [30]

although this quantum phonon effect is not captured by classical molecular dynamics.
To implement a compatible continuum model it is necessary to have knowledge of the relevant macroscopic material

parameters. In this case the only unknown parameter is the thermal conductivity. Close inspection of the steady state tem-
perature profiles within the TDR in Fig. 3 show that it is not precisely linear due to the variation in the thermal conductivity
with temperature. To first order, it is proposed that the conductivity is a linear function of temperature such that
k(T) = k0 +rkT. In the steady state the heat flux of (2.1) has a constant value
qss ¼ kðTÞ dT
dx
: ð3:3Þ
This is readily integrated to give
qssx ¼ k0ðT � T0Þ þ 1=2rkðT2 � T2
0Þ ð3:4Þ
where the position is x = 0 at the j = 0 slice at which T = T0. The quadratic of (3.4) closely fits the observed temperature dis-
tributions shown in Fig. 3, but knowledge of the steady state heat flux qss is required to determine an absolute thermal con-
ductivity value.

The instantaneous (spatially averaged) atomistic heat flux between each slice, qj, at time t can be determined from
qjðtÞ ¼ qj�1ðtÞ þ
X
slice j

fT � _xþ 1
2s

X
slice j

m _xðtÞj j2 � _xðt � sÞj j2
h i

ð3:5Þ
where the first term on the right hand side, qj�1, is the heat flow out of the previous slice, the second term is the rate at which
the thermostat adds energy to slice j (zero in BR and TDR) and the third term is the rate of change in the kinetic energy of the
slice over the time step s. The force on each atom due to the thermostat is fT ¼ Rf � cm _x from (2.4) for the stochastic ther-
mostats and fT ¼ �nm _x from (2.5) for the Nosé–Hoover thermostat. The heat flux into the first slice (in the TR) at
j = � (MB + MT) is zero as these atoms are fixed in space. Hence the time-averaged heat flux hqji can be calculated for every
slice using (3.5). This was done for the steady state simulations of Fig. 3. The heat flux in the TDR was found to be constant
with qss = hqji for all j � 0, . . . ,M. Eq. (3.4) was then fitted to the temperature distribution and the thermal conductivity deter-
mined to be k0 = 1.016 W/(m K) and rk = �0.02 W/(m K). This calibration of the thermal conductivity from a single steady
state NEMD simulation only needs to be conducted once for a given interatomic potential.

Note that the long boundaries of the rod are periodic so the non-uniform thermal expansion of the rod cannot be accom-
modated. The compressive strain in the rod therefore increases with the temperature and varies along its length. It is pos-
sible that the thermal conductivity has a significant dependence on the strain state [16]. Ideally a continuum model will not
require material parameters to be pre-determined, especially if they are a complex function of state, e.g. temperature, strain
and crystallographic orientation. It is often difficult or too time consuming to completely characterise a parameter in terms
of the many state variables. Therefore it is preferable to determine these parameters on-the-fly [5] or at least refine them
during the course of a simulation. This is discussed within the context of the coupling methodology proposed in the follow-
ing sub-section.

3.2. Thermal boundary conditions for steady state coupled atomistic/continuum simulation

Two finite difference continuum regions (CR) containing N + 1 nodes and defined by (3.1) are now coupled to each of the
two ends of the atomistic NEMD simulation, as shown in Fig. 4(a) (for the left hand region only). The nodal positions go from
~x�N to ~x0 for the left hand CR and from ~xM to ~xMþN for the right hand CR. The nodes at ~x0 and ~xM coincide with the edges of the
TDR in the NEMD simulation at slices j = 0 and j = M. The only prescribed boundary conditions (temperatures) are now at the
outermost boundaries of the finite difference grid and are denoted eT�N and eT MþN . Unlike the analysis of Section 2.3, the target
temperatures at the boundaries of the TDR, T0 and TM, are now no longer fixed at a particular value. The NEMD simulation is
now only of interest in the TDR. The atomistic TRs and BRs are only used to control the thermal boundary conditions to the
TDR. These boundary conditions are determined by matching conditions at the interface between the CR and TDR at j = 0 and
j = M. For steady state analysis it is sufficient to simply specify that the desired temperatures for the edges of the TDR should
be the same as those at the matching node in the finite difference model such that we defined T0 and TM by
T0 ¼ eT 0; TM ¼ eT M ð3:6Þ
The thermostat temperatures are determined by the feedback control (2.9) as before, as shown in Fig. 4(a). Results are shown
in Fig. 5 for the stadium damping thermostat for N = 20. The temperature gradient is maintained within the TDR, although
this time the temperatures are defined at the remote boundaries of the finite difference simulation not at the edges of the
TDR. The fixed end temperatures are taken to be eT L ¼ eT�N ¼ 40 K and eT R ¼ eT MþN ¼ 20 K. The temperature profiles in the CRs
at the left and right hand sides and the temperature in the TDR are shown. The unphysical temperatures in the TRs and BRs
are not shown in these or subsequent simulation results. It is found that the temperature profile quickly settles down to the
expected stable steady state. This is a considerable achievement as the atomistic region is highly dynamic and the instan-
taneous temperature at the continuum/atomistic (CR/TDR) interface fluctuates rapidly. The stability of the method is not
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found to be very sensitive to the choice of the material parameters in the CR (k0,rk and c) or those in the TR (QT) which is
important. A discontinuity in the gradient of the temperature curves at this interface is only observed if there is a significant
thermal conductivity mismatch between the CR and TDR. As the heat flux and temperature gradient are known at all points
in the simulation it is a simple matter to determine the thermal conductivity during the simulation. This value can be used to
refine the measured value on-the-fly. This is especially useful if the conductivity is expected to change significantly due to a
variation in the state variables during the simulation.

3.3. Thermal boundary conditions for transient coupled atomistic/continuum simulation

The previous work in this paper has only considered the steady state response of NEMD simulations. However, one of the
advantages of a continuum model is that full control of the remote boundary conditions is obtained. These boundary con-
ditions are dependent on the temperature or the heat flux at the boundary and can therefore be functions of time. In this
section the methodology is extended to consider such cases. The thermostat temperatures will evolve over time for transient
problems. Therefore it is necessary to determine the rate of change of the target temperatures in the TRs. In addition, simply
using the temperature matching condition (3.6) is not sufficient as time delays and thermal fluctuations will allow thermal
energy to be lost over time. Therefore we explicitly enforce the conservation of thermal energy between the models. A first
approach would be to simply equate the continuum and atomistic heat fluxes at the CR/TDR interface. For the left hand side
shown in Fig. 4(b) this would require ~q0 ¼ q0. However, the instantaneous atomistic heat flux is rapidly changing so this is
only enforced on average over time. This is achieved by controlling the thermostat target temperatures at each end such that
_TL ¼
1

QQ

Z t

0
ð~qm � qmÞdt; _TR ¼

1
Q Q

Z t

0
ðqn � ~qnÞdt ð3:7Þ
where QQ determines the response rate of the system to disparities in the heat flux and the integers m and n are the indices of
the slices where this condition is to be applied. The right hand side of Eq. (3.7) is the difference between the total thermal
energy that has left the continuum region and that which has entered the atomistic region (or vice versa). The time-ensem-
ble average of this quantity should be zero (i.e. heat flux must be conserved). The left hand side shows that the thermostat
temperatures evolve over time to achieve this. The integral ensures that no heat is lost over time. The temperatures in the
atomistic and continuum regions do not need to be connected in this case, as long as the values at the CR/TDR interface are
initially the same. Conservation of the heat flux through (3.7) should ensure that the atomistic and continuum descriptions
of the temperature at the interface should remain the same thereafter. However, it is found to be of added benefit to equate
the continuum temperature at the CR/TDR interface to the atomistic value such that
eT 0 ¼ hT0i; eT M ¼ hTMi ð3:8Þ
to give additional feedback to the algorithm and reduce its sensitivity to parameter selection. Note that this is different to the
steady state temperature matching condition (3.6). In that case, the MD target boundary temperature was specified to be the
continuum temperature value at that point. In (3.8) the temperature in the continuum is taken to be the ensemble-averaged
temperature at the equivalent point in the MD simulation. The remaining issue when dealing with thermal transients is the
responsiveness of the system. There is an inherent time delay in the system as a change in the target temperature of the TR
takes a small time to effect a change in the heat flux at another point in the simulation. This is unavoidable with this
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methodology so the objective is to minimize the effect of this delay. This can be achieved by optimizing the position, m, at
which heat flux conservation between the continuum and atomistic models is enforced. Selecting this to be the BR/TDR
interface (m = 0 and n = M) gives reasonable results although there is still a small noticeable delay between the two descrip-
tions. It is found that the optimal position is at the TR/BR interface as shown in Fig. 4(b). This minimizes the distance be-
tween the thermostat and the system controller (3.7). The BR has been reduced in size to MB = 5 based on the steady
state observations for the stadium damping thermostat in Fig. 3. This is because the system is more responsive if the buffer
zone is smaller.

Results are shown in Fig. 6 for four different test cases. These demonstrate the ability of the model to respond to changes
in the boundary conditions at the atomistic/continuum interface over time, including multiple reversals in the heat flux from
heat entering to heat leaving the boundary. Even though the thermal change is large and rapid, there is no observable delay
between the response of the continuum and atomistic regions. In each case the combined atomistic/continuum results agree
very well with the results from a full finite difference simulation (shown as dashed lines). All parameters remain the same as
before with the additional parameter QQ = 6es. The choice of value for this parameter is not critical and the algorithm is not
particularly sensitive to it. All the graphs are plots of the average of multiple simulations at 10,000s intervals to reduce the
effect of thermal noise on the image.

The first case shown in Fig. 6(a) has the remote boundary temperatures fixed at eT L ¼ 40 K and eT R ¼ 20 K. The simulation
starts with one half held at 40 K while the other half is held at 20 K. The centre slice is initially fixed such that no heat flows
between the two halves while the system is thermalised. After sufficient time the centre slice is allowed to interact as nor-
mal, and the system evolves towards a steady state. The second case is shown in Fig. 6(b). Here, the system is allowed to
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Fig. 6. Snapshots of the temperature profile evolution for transient boundary conditions for an entirely continuum model (dashed lines) and a coupled
atomistic/continuum model, where the TDR is 06 < j 6 80. Four cases are considered: (a) the simulation starts with one half held at 40 K while the other half
is held at 20 K; (b) the system is allowed to reach a steady state with the outer edges set at 40 K and 30 K. Then the left outer edge is suddenly dropped to
20 K and the system allowed to evolve towards its new steady state; (c) a central region within the TDR is thermalised at 40 K while all surrounding atoms
and the continuum are at 20 K. The hot inner region cools over time until the system has cooled down entirely to a steady state temperature of 20 K after a
long-time; and (d) initially at 20 K, the left hand boundary is subject to an instantaneous temperature increase to 40 K. Again, the system evolves as
expected towards the steady state. In each case the coupled simulation result agrees very well with the result from the continuum simulation.
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reach a steady state with the outer continuum temperatures set at eT L ¼ 40 K and eT R ¼ 30 K. The left outer edge eT L is then
instantaneously dropped to 20 K, and the system allowed to evolve. The boundary conditions at the CR/TDR interface are
truly transient as the temperature and heat flux evolves continuously over time at this point. The third case is shown in
Fig. 6(c). A central part of the TDR is thermalised at 40 K while all surrounding atoms and the CRs are thermalised at
20 K. As in Fig. 6(a), this initial distribution is achieved by temporarily fixing the atoms between these different temperature
zones. When the interactions are turned on again, the 40 K region rapidly cools down to the temperature of the surrounding
20 K region, reaching equilibrium after a time of 105s. The fourth case, shown in Fig. 6(d), is for a coupled system that is ini-
tially thermalised at 20 K. The left hand temperature eT L is then instantaneously increased to 40 K. The system evolves as ex-
pected towards the steady state. As expected the transient boundary conditions produce the same result as the steady state
boundary conditions once equilibrium has been achieved. However, the steady state boundary conditions in subsection 3.2
are still of value for purely steady state problems as they do not require the additional complication of the flux calculation of
(3.5). Importantly, the continuum coupling has virtually no computational overhead, with the NEMD part of the simulation
accounting for practically all the processor time. Rapid sinusoidal variation of the external boundary conditions has also been
investigated with excellent correspondence between the purely continuum and the hybrid models even after many hun-
dreds of cycles.

In the problems of Fig. 6, the system always evolves towards a steady state. A situation which better demonstrates the
potential of the coupled atomistic/continuum method proposed here is shown in Fig. 7. This is a situation where the system
is large (effectively infinite) and will not reach a steady state (within a finite time). Energy is constantly injected into the
central slice of the TDR by adding a random force to the atoms there. The temperature of these atoms increases and heat
flows out towards the boundaries. Fig. 7 shows the temperature profile evolution for two approximations to the full atom-
istic simulation of this problem (where we imagine that it is not possible to obtain the full solution due to computational
limitations). Case (A) is an atomistic approximation of a reduced system employing a 100 slice NEMD simulation with
the temperature fixed at 20 K at the local boundaries (using the algorithm in Section 2.3); case (B) represents a similar NEMD
simulation of 100 slices coupled to a large continuum region. This is expected to provide more realistic boundary conditions
as the temperature at the atomistic/continuum boundaries can evolve over time. The inset in Fig. 7 shows the temperature
profile at a time t = 104s when heat is just beginning to cross the atomistic system boundaries. At this point the profiles are
similar. The main figure illustrates the thermal profile at a much later time, t = 105s (the earlier case (B) t = 104s result is
shown again for reference). The temperature profiles are now quite different. The constraint of the local fixed temperature
boundary conditions in case (A) has had a major effect. A steady state temperature gradient has developed such that the heat
flow from the centre balances the rate of energy input into the system. This is an artefact of the system size. In case (B) the
atomistic simulation is embedded within a large continuum region so that it cannot see the remote boundaries within the
time scale of the simulation. It is important to note that case (B) does not require significantly greater computational time
that case (A), i.e. the continuum region and coupling algorithm has a very small computational overhead compared to the
NEMD simulation. This class of problem is representative of a situation where work is being done on an atomistic simulation
but the simulation is reduced in size (for computational efficiency) such that heat is crossing the simulation boundaries
(without being properly accounted for) during the simulation time, e.g. differential thermal contact such as an AFM tip
on a substrate [21], nanoindentation [14,15], wear [12] or crack growth [31].
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Fig. 7. Transient analysis for two identical NEMD simulations except for their boundary conditions: case (A) has the temperature fixed at 20 K at its
boundaries (at j = 0 and j = 100) whilst the other, case (B), has its boundaries coupled to a much larger continuum simulation. Energy is injected into the
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compares cases (A) and (B) at a time (t = 104s) when the heat flux is starting to be affected by the boundary conditions. At this point the temperature profiles
are similar. As the system continues to evolve, the temperature gradient in case (A) balances the rate of energy input into the system and achieves a steady
state. This is a direct consequence of the local boundary conditions. Meanwhile, case (B) continues to evolve as heat flows across the atomistic/continuum
boundary into the large CR which provides more appropriate boundary conditions.
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4. Discussion and conclusions

A simple molecular dynamics/continuum coupling algorithm for heat transfer in solids has been developed which does
not depend upon the underlying interatomic potential model employed. This should therefore be useful in a wide range
of areas in the modelling of solid crystals [32–35]. The models in this paper have been developed within the context of a
quasi one-dimensional problem in which net heat flow only occurs in one direction. The situation is slightly more compli-
cated for controlling the temperature in more than one direction but the method is still applicable. The thermostatting re-
gion will no longer necessarily drive the boundary of the TDR towards a uniform temperature, i.e the temperature can vary
around the boundary. In the case of local thermostats such as Langevin and stadium damping this is not a problem as each
atom can be driven towards a different temperature. Li and Weinan [5] have shown that global thermostats such as Nosé–
Hoover can also achieve this by dividing the thermostatted region in to sections along the periphery and having a different
target temperature in each. However, this sectioning can complicate the algorithm and leads to an increase in the number of
thermostatting variables n. This is not the case for the local thermostats, where atoms can be individually labelled as thermo-
statted or unthermostatted. Hence the TR can be easily changed to accommodate an expansion/contraction of the TDR over
time by altering which atoms are considered to be part of it. The steady state boundary conditions considered in Sections 2.3
and 3.2 require a relationship between the target temperatures on the BR/TDR boundary and the thermostat temperatures
with the TR, similar to that given in (2.9). This is obvious if a boundary has a uniform temperature (as considered here) but
more complicated if the temperature varies continuously along the boundary, where a particular thermostatted atom will
affect the temperature of a number of target temperature atoms and vice versa. In this case the thermostat temperatures
can be related to the target temperatures through a compact local proximity weighting kernel. The more general transient
boundary conditions considered in Section 3.3 however only require a knowledge of the heat flux which can be readily cal-
culated without additional complications to the algorithm.

The issue of thermal expansion has been briefly mentioned in Section 3.1. Coupled thermoelastic boundary conditions
need to be considered to correctly model this phenomenon. Qu et al. [10] have proposed an isothermal model for coupled
continuum/atomistic elasticity problems using a stadium damping thermostat at the boundary to avoid adverse phonon
reflection. This method is compatible with the approach here for combined coupled atomistic/continuum thermoelastic
problems. This would be a beneficial extension, as stresses due to thermal expansion will always be an issue in complete
NEMD simulations. The quasi-elastostatic continuum far-field is coupled to the quasi-static atoms at the outer edge of
the TDR. The force on the nodes of the finite element field must balance the time-ensemble average force on their equivalent
atoms in the TDR. The only significant difference between the thermal equilibrium case [5] and the non-equilibrium case
considered here is that the additional TR and BR need to be introduced to control the thermal boundary conditions of the
TDR. Away from equilibrium the temperatures in the TR are unphysical and chosen to achieve the desired target tempera-
tures at the TDR boundary. This leads to unphysical thermal expansion or contraction of the TR and BR which would affect
the stress state within the TDR. To implement the method of Qu et al. [10] it would be necessary to find some way of enforc-
ing the thermal expansion to be that associated with the physical temperature at the same point in the finite element field.
This could be achieved through a stadium version of the Langevin barostat to also regulate the hydrostatic pressure of each
atom [36].

In summary, a method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics (NEMD)
simulations has been presented in Section 2. The method is simple to implement into a conventional molecular dynamics
code and independent of the atomistic model employed. The crystal is thermostatted at the boundaries to control the tem-
perature at the edges of the true dynamics region (TDR). A small buffer region lies between these two regions to avoid the
TDR being corrupted by boundary effects. This simple feedback control has been shown to work for a quasi one-dimensional
example of heat flow down a three-dimensional rod of uniform cross-section. These boundary conditions are of use for ana-
lysing the heat transfer across nanoscale features [37] such as grain boundaries [24], nanowires [23,38,39] and nanoconstric-
tions [21]. As the model does not rely on the potential, there is a possibility that the potentials could be altered to incorporate
quantum effects [40]. The method for controlling the boundary conditions of NEMD simulations has been extended in Sec-
tion 3 to allow atomistic/continuum models to be thermally coupled concurrently for the analysis of steady state and tran-
sient heat conduction problems. The effectiveness of this algorithm has been demonstrated through a number of examples.
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